(本小题满分13分)已知抛物线的顶点在坐标原点,焦点在正半轴上,抛物线上的点到的距离为2,且的横坐标为1.过焦点作倾斜角为锐角的直线交抛物线于、两点,且与其准线交于点.(Ⅰ)求抛物线的方程;(Ⅱ)若线段的长为,求直线的方程;(Ⅲ)在上是否存在点,使得对任意直线,直线,,的斜率始终满足,若存在求点的坐标;若不存在,请说明理由.
设为实数,函数, (1)讨论的奇偶性; (2)求的最小值。
设函数与的定义域是且,是偶函数, 是奇函数,且,求和的解析式.
已知函数的定义域为,且对任意,都有,且当时,恒成立, 证明:(1)函数是上的减函数; (2)函数是奇函数。
判断下列函数的奇偶性: (1)(2)
已知数列的前项和,求数列是等比数列的充要条件。