关于的不等式.(Ⅰ)当时,解此不等式;(Ⅱ)设函数,当为何值时,恒成立?
已知函数y=|cosx+sinx|.(1)画出函数在x∈[-,]的简图;(2)写出函数的最小正周期和单调递增区间;试问:当x为何值时,函数有最大值?最大值是多少?(3)若x是△ABC的一个内角,且y2=1,试判断△ABC的形状.
已知函数f(x)=4sin2(x+)+4sin2x-(1+2),x∈R.(1)求函数f(x)的最小正周期和图象的对称中心;(2)求函数f(x)在区间上的值域.
已知tan2θ=-2,π<2θ<2π.(1)求tanθ的值;(2)求的值
已知α∈,β∈且sin(α+β)=,cos β=-.求sin α.
已知函数f(x)=()x,函数y=f-1(x)是函数y=f(x)的反函数.(1)若函数y=f-1(mx2+mx+1)的定义域为R,求实数m的取值范围;(2)当x∈[-1,1]时,求函数y=[f(x)]2-2af(x)+3的最小值g(a);(3)是否存在实数m>n>3,使得g(x)的定义域为[n,m],值域为[n2,m2]?若存在,求出m、n的值;若不存在,请说明理由