设、分别是椭圆的左、右焦点.(1)若是该椭圆上的一个动点,求的取值范围; (2)设过定点的直线与椭圆交于不同的两点,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围.(3)设是它的两个顶点,直线与AB相交于点D,与椭圆相交于两点.求四边形面积的最大值
(本小题满分12分)设函数是定义在上的奇函数,且 (1)求函数的解析式; (2)若f(x)在[0,1)上为增函数,求不等式的解集
(本小题满分12分)(1)函数f(x)是R上的偶函数,且当x>0时,函数的解析式为f(x)=-1.求当x<0时,函数的解析式.(2)若满足关系式,求.
(本小题满分10分)已知集合,若,求实数a的值.
(本小题满分14分))某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示。(Ⅰ)写出图一表示的市场售价与时间的函数关系式;写出图二表示的种植成本与上市时间的函数关系式;(Ⅱ)假如设定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102㎏,时间单位:天)
(本小题满分12分)已知下列两种说法:①方程有两个不同的负根;②方程无实根。(1)若①和②都成立,求实数的范围;(2)若①和②中至少有一个成立,求实数的范围;(3)若①和②中有且只有一个成立,求实数的范围;