如图,二次函数y=ax2+bx+c的图象过A、B、C三点.(1)求出抛物线解析式和顶点坐标;(2)当﹣2<x<2时,求函数值y的范围;(3)根据图象回答,当x取何值时,y>0?
设抛物线y=mx2-3mx+2(m≠0)与x轴的交点为A(x1,0),B(x2,0),且x12+x22=17,其中x1<x2,点P(a,b)为抛物线上一动点.(1)求抛物线的解析式; (2)连接AC,过P点做直线PE∥AC交x轴于点E,交y轴于点F(O,t),当a取何值时t有最大值,最大值是多少? (3)判断在(2)的条件中是否存在一点P,使以点A、C、P、E为顶点的四边形为平行四边形.若不存在试说明理由;若存在,试求出点P的坐标.
阅读材料: 关于三角函数还有如下的公式: sin(α±β)="sinαcosβ±cosαsinβ" tan(α±β)=.利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.例:tan15°=tan(45°-30°)==根据以上阅读材料,请选择适当的公式解答下面问题 (1)计算:sin15°; (2)乌蒙铁塔是六盘水市标志性建筑物之一(图1),小华想用所学知识来测量该铁塔的高度,如图2,小华站在离塔底A距离7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.62米,请帮助小华求出乌蒙铁塔的高度.(精确到0.1米,参考数据=1.732,=1.414)
如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D点,连接CD.(1)求证:∠A=∠BCD; (2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.
如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF; (2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后获毛利润共2.1万元(毛利润=(售价-进价)×销售量) (1)该商场计划购进甲、乙两种手机各多少部? (2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量,已知乙种手机增加的数量是甲种手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过17.25万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.