(本题满分10分)如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.(1)现随机转动转盘一次,停止后,指针指向1的概率为 ;(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.
先化简分式,再在﹣3<x≤2中取一个合适的x,求出此时分式的值
(本小题12分) 菱形ABCD的边长为2,∠BAD=60°,对角线AC,BD相交于点O,动点P在线段AC上从点A向点C运动,过P作PE∥AD,交AB于点E,过P作PF∥AB,交AD于点F,四边形QHCK与四边形PEAF关于直线BD对称. 设菱形ABCD被这两个四边形盖住部分的面积为S1,AP=x: (1)对角线AC的长为;S菱形ABCD=; (2)用含x的代数式表示S1; (3)设点P在移动过程中所得两个四边形PEAF与QHCK的重叠部分面积为S2,当S2=S菱形ABCD时,求x的值.
(本小题12分)已知抛物线p:和直线l:: (1)对下列命题判断真伪,并说明理由: ①无论k取何实数值,抛物线p总与x轴有两个不同的交点; ②无论k取何实数值,直线l与y轴的负半轴没有交点; (2)设抛物线p与y轴交点为C,与x轴的交点为A、B,原点O不在线段AB上;直线l与x轴的交点为D,与y轴交点为C1,当OC1=OC+2且OD2=4AB2时,求出抛物线的解析式及最小值.
(本小题10分)平面直角坐标系中,点A在函数y1=(x>0)的图象上,点B在y2=-(x<0)的图象上,设A的横坐标为a,B的横坐标为b: (1)当|a|=|b|=5时,求△OAB的面积; (2)当AB∥x轴时,求△OAB的面积; (3)当△OAB是以AB为底边的等腰三角形,且AB与x轴不平行时,求a·b的值.
(本小题10分) (1)将下列各式进行分解因式:①; ② (2)先化简,再求值:(1-)÷(-2),其中; 完成对分式的化简求值后,填空:要使该分式有意义,x的取值应满足.