(本小题满分10分)某商店经营一种成本为每千克40美元的水产品,根据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,销售单价定为多少元时,获得的利润最大?最大利润是多少?
已知关于的一元二次方程的两个实数根、的值分别是□ABCD的两边AB、AD的长. (1)如果,试求□ABCD的周长; (2)当为何值时,□ABCD是菱形?
计算: (1)2sin45°+ (2)
基本模型 如图1,点A,F,B在同一直线上,若∠A=∠B=∠EFC=90°,易得△AFE∽△BCF. (1)模型拓展: 如图2,点A,F,B在同一直线上,若∠A=∠B=∠EFC,求证:△AFE∽△BCF; (2)拓展应用:如图3,AB是半圆⊙O的直径,弦长AC=BC=4,E,F分别是AC,AB上的一点,若∠CFE=45°.若设AE=y,BF=x,求出y与x的函数关系式及y的最大值;
请阅读下列材料:若是关于的一元二次方程的两个根,则方程的两个根和系数有如下关系:. 我们把它们称为根与系数关系定理. 如果设二次函数的图象与x轴的两个交点.利用根与系数关系定理我们又可以得到A、B两个交点间的距离为: 请你参考以上定理和结论,解答下列问题: 设二次函数的图象与x轴的两个交点为,抛物线的顶点为,显然为等腰三角形。 (1)当为等腰直角三角形时,求的值, (2)当为等边三角形时,求的值, (3)设抛物线与轴的两个交点为、,顶点为,且,试问如何平移此抛物线,才能使?
如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米). (参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)