在△ABC中,AB=AC,∠A=120°,BC=9cm,AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,(1)求证:BM=MN=NC.(2)求MN的长度.
某县为了解七年级学生对篮球、羽毛球、乒乓球、足球(以下分别用A、B、C、D表示)这四种球类运动的喜爱情况(每人只能选一种),对全县七年级学生进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的学生有 人;(2)若全县七年级学生有4000人,估计喜爱足球(D)运动的人数是 人;(3)在全县七年级学生中随机抽查一位,那么该学生喜爱乒乓球(C)运动的概率是 .
如图,在Rt△ABC中,∠B=90°,分别以A、C为圆心,大于AC长为半径画弧,两弧相交于点M、N,作直线MN,与AC交于点D,与BC交于点E,连接AE.(1)∠ADE= °;(2)AE CE(填“>、<、=”)(3)当AB=3、AC=5时,△ABE的周长是 .
已知反比例函数的图象经过点M(2,1).(1)求该函数的表达式;(2)当2<x<4时,求y的取值范围(直接写出结果).
如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠MPN= ;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.
若两个二次函数图象的顶点,开口方向都相同,则称这两个二次函数为“同簇二次函数”。(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2—4mx+2m2+1,和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2为y1为“同簇二次函数”,求函数y2的表达式,并求当0≤x≤3时,y2的最大值。