如图是用硬纸板做成的四个全等的直角三角形(两直角边长分别是a、b,斜边长为c)和一个正方形(边长为c).请你将它们拼成一个能验证勾股定理的图形.(1)画出拼成的这个图形的示意图;(2)用(1)中画出的图形验证勾股定理.
如图,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,弧AE=弧 AB,BE分别交AD、AC于点F、G.(1)判断△FAG的形状,并说明理由;(2)若点E和点A在BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由.
已知关于的一元二次方程有两个实数根.(1)求的取值范围;(2)设是方程的一个实数根,且满足,求的值.
解方程:(1);(2).
某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.如甲用户某月份用煤气80立方米,那么这个月甲用户应交煤气费用为 元. (1)设甲用户某月用煤气x立方米,用含x的代数式表示甲用户该月的煤气费. 若x≤60,则费用表示为 元;若x>60,则费用表示为 元. (2)若甲用户10月份的煤气费是84元,求甲用户10月份用去煤气多少立方米?
有两根同样长度但粗细不同的蜡烛,粗烛可燃4h,细烛可燃3h,一次停电,同时点燃两根蜡烛,来电后同时吹灭,发现粗烛的长度是细烛的2倍.求停电的时间.