如图,椭圆:的右焦点为,右顶点、上顶点分别为点、,且.(1)求椭圆的离心率;(2)若斜率为2的直线过点,且交椭圆于、两点,.求直线的方程及椭圆的方程.
(本小题满分10分)选修4-1:几何证明选讲如图,圆O的半径OB垂直于直径AC,M为OA上一点,BM的延长线交圆O于N,过N点的切线交CA的延长线于P。(1)求证:PM2=PA·PC(2)若圆O的半径为,OA=OM,求MN的长。
(本小题满分13分)已知函数.(1)若函数在上单调递增,求实数的取值范围.(2)记函数,若的最小值是,求函数的解析式.
(本小题满分12分)已知椭圆方程为 斜率为的直线过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴交于点M(0,m)。(1)求m的取值范围;(2)求△OPQ面积的取值范围。
(本小题满分12分)如图,四棱锥P-ABCD中底面ABCD为矩形,PD⊥底面ABCD,AD=PD=1,AB=BC,E、F分别为CD、PB的中点。(1)求证:EF⊥平面PAB;(2)求三棱锥P-AEF的体积
(本小题满分12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机抽取一个球,将其编号记为,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为.求关于的一元二次方程有实根的概率;(2)先从袋中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为.若以作为点P的坐标,求点P落在区域内的概率.