(本大题满分12分)某公司预计全年分批购入每台价值为2000元的电视机共3600台,每批都购入x台,且每批均需付运费400元,储存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比。若每批购入400台,则全年需用去运费和保管费43600元。现在全年只有24000元资金用于支付运费和保管费,请问能否恰当安排每批进货的数量,使资金够用?写出你的结论并说明理由
如图,已知矩形ABCD是圆柱O1O2的轴截面,N在上底面的圆周O2上,AC、BD相交于点M; (1)求证:CN⊥平面ADN; (2)已知圆锥MO1和圆锥MO2的侧面展开图恰好拼成一个半径为2的圆,直线BC与平面CAN所成角的正切值为,求异面直线AB与DN所成角的值.
已知函数f(x)=|x﹣5|+|x﹣3|. (Ⅰ)求函数f(x)的最小值m; (Ⅱ)若正实数a,b满足+=,求证:+≥m.
在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点. (Ⅰ)求a; (Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.
如图,AB是⊙O的直径,C、F是⊙O上的点,AC是∠BAF的平分线,过点C作CD⊥AF,交AF的延长线于点D. (1)求证:CD是⊙O的切线. (2)过C点作CM⊥AB,垂足为M,求证:AM•MB=DF•DA.
已知函数在点(﹣1,f(﹣1))的切线方程为x+y+3=0. (Ⅰ)求函数f(x)的解析式; (Ⅱ)设g(x)=lnx,求证:g(x)≥f(x)在x∈[1,+∞)上恒成立.