(本小题满分12分)已知(1)求函数的最小正周期及在区间的最大值;(2)在中,所对的边分别是,,求周长的最大值.
如图,在三棱锥中,△是边长为的正三角形,, ,分别为,的中点,,. (Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.
已知数列满足:,,(),,,分别是公差不为零的等差数列的前三项.(Ⅰ)求的值;(Ⅱ)求证:对任意的,,,不可能成等比数列.
在△中,角所对的边分别为.已知.(Ⅰ)求角的大小; (Ⅱ)若,且△的面积为,求边的长.
已知,函数.(Ⅰ)当时,求函数的最小值;(Ⅱ)讨论的图象与的图象的公共点个数.
已知椭圆:,右顶点为,离心率为,直线:与椭圆相交于不同的两点,,过的中点作垂直于的直线,设与椭圆相交于不同的两点,,且的中点为.(Ⅰ)求椭圆的方程;(Ⅱ)设原点到直线的距离为,求的取值范围.