如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.
(本题满分9分)如图,在直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交与点A(-1,0)、B(3,0)两点,抛物线交y轴于点C(0,3),点D为抛物线的顶点.直线y=x-1交抛物线于点M、N两点,过线段MN上一点P作y轴的平行线交抛物线于点Q.(1)求此抛物线的解析式及顶点D的坐标;(2)问点P在何处时,线段PQ最长,最长为多少?(3)设E为线段OC上的三等分点,连接EP,EQ,若EP=EQ,求点P的坐标.
(本题满分8分)已知关于x的方程x2-2(k-1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2-1,求k的值.
(本题满分8分)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2010年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求2012年共建设了多少万平方米廉租房.
(本题满分6分)已知二次函数y=x2+bx+c的图象经过点(-1,0),(1,-2),(1)求该二次函数的解析式;(2)当y随x的增大而增大时,求x的取值范围.
(本题满分6分)已知α是锐角,且sin(α+15°)=.(1)求α的值;(2)计算的值.