如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.
县教育局在全县中小学开展“关注校车,关注学生”为主题的交通安全教育宣传活动,某中学为了了解本校学生的上学方式,在全校范围随机抽查了部分学生进行调查。将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题: (1)m= %,该校此次共随机抽取 名学生进行调查,并补全条形统计图。(2)在这次抽查中,采用哪种上学方式的人数最少?(3)若该校共有3000名学生,请你估计该校由家长接送的学生约有多少名。
现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字“1”、“2”,“3”,第一次从这三张卡片中随机抽取一张,记下数字后放回,第二次再从这三张卡片中随机抽取一张并记下数字,请用列表或画树状图的方法表示出上述试验所有可能的结果,并求两次抽取的数字之积大于3的概率.
先化简,再求值:,其中
(1)计算: (2)解方程:+=2
已知抛物线经过点A(-1,0),B(3,0),交轴于点C,M为抛物线的顶点,连接MB.(1)求该抛物线的解析式;(2)在轴上是否存在点P满足△PBM是直角三角形,若存在,请求出P点的坐标,若不存在,请说明理由;(3)设Q点的坐标为(8,0),将该抛物线绕点Q旋转180°后,点M的对应点为,求的度数.