如图,在△ABC和△CDE中,∠B =∠D=90°,C为线段BD上一点,且AC⊥CE.AB=3,DE=2,BC=6.求CD的长.
已知抛物线 y = a x 2 + bx + c 过 0 , 4 , 2 , - 2 两点,当抛物线在轴上截得的线段最短时,求这时的抛物线的解析式.
已知 x , y , z 均为非负数且满足 x = y + z - 1 = 4 - y - 2 x .
(1)用 x 表示 y , z ;
(2)求 u = 2 x 2 - 2 y + z 的最小值.
已知函数 y = - 1 2 x 2 + 13 2 ,当 a ⩽ x ⩽ b 时, y 的最小值为 2 a ,最大值为 2 b ,求 a , b 的值.
已知二次函数 y = a x 2 + bx + c 的图象的一部分如图所示,试确定 a 的取值范围.
已知二次函数 y = x 2 - x - 2 及实数 a > - 2 .求:
(1)函数在 - 2 < x ⩽ a 的最小值;
(2)函数在 a ⩽ x ⩽ a + 2 的最小值.