如图,直线AB交x轴正半轴于点A(a,0),交y轴正半轴于点B(0,b),且a、b满足。(1)求A、B两点的坐标;(2)D为OA的中点,连接BD,过点O作OE⊥ BD于 F,交AB于E,求证∠BDO=∠EDA;(3)如图,P为x轴上A点右侧任意一点,以BP为边作等腰Rt△PBM,其中PB=PM,直线MA交y轴于点Q,当点P在x轴上运动时,线段OQ的长是否发生变化?若不变,求其值;若变化,求线段OQ的取值范围.
如图,在⊙O中,直径AB的长为10cm,弦AC=6cm,∠ACB的平分线CD交⊙O于点D. (1)求BC、AD的长;(2)求四边形ADBC的面积.
如图,△ABC中,∠BAC=35°,将△ABC绕点A逆时针旋转到△ADE处,使点B落在BC的延长线上的点D处,且∠ACD=75°,求∠BDE的度数.
如果2x2+1与4x2—2x一21的值是互为相反数,则x的值是多少?
计算:
如图,已知反比例函数和一次函数y=2x-1,其中一次函数的图象经过(a,b),(a+1,b+k)两点. (1)求反比例函数的解析式; (2)如下图,已知点A在第一象限,且同时在上述两个函数的图象上,求点A的坐标; (3)利用(2)的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.