.如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连结BE、EC.试判断△BCE的形状,并证明你的结论.
如图,∠AOB=90°,∠BOC=30°,则∠AOC=°.
如图,直线AB、CD相交于O,射线OE把∠BOD分成两个角.若已知∠BOE=∠AOC,∠EOD=36°,求∠AOC的度数.
如图,AB与CD交于点O,OM为射线. (1)写出∠BOD的对顶角. (2)写出∠BOD与∠COM的邻补角. (3)已知∠AOC=70°,∠BOM=80°,求∠DOM和∠AOM的度数.
我们知道,两条直线相交,有且只有一个交点,三条直线相交,最多只有三个交点,那么,四条直线相交,最多有多少个交点?一般地,n条直线最多有多少个交点?说明理由.
如图所示,OD是∠BOC的平分线,OE是∠AOC的平分线,找出图中互补的角、互余的角.