函数在一个周期内的图象如图所示,为图象的最高点,、为图象与轴的交点,且为等边三角形。将函数的图象上各点的横坐标变为原来的倍,将所得图象向右平移个单位,再向上平移1个单位,得到函数的图象(1)求函数的解析式及函数的对称中心.(2)若对任意恒成立,求实数的取值范围。
设函数的图像与直线相切于点。 (Ⅰ)求的值; (Ⅱ)讨论函数的单调性。
已知命题不等式的解集为R;命题:在区间上是增函数.若命题“”为假命题,求实数的取值范围.
已知{}是公差不为零的等差数列,=1,且,,成等比数列. (Ⅰ)求数列{}的通项;(Ⅱ)求数列{}的前项和.
如图,已知椭圆过点.,离心率为,左、右焦点分别为、.点为直线上且不在轴上的任意一点,直线和与椭圆的交点分别为、和、,为坐标原点. (I)求椭圆的标准方程; (II)设直线、的斜线分别为、.证明:
已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点. (Ⅰ)证明:CM⊥SN; (Ⅱ)求SN与平面CMN所成角的大小.