(本小题满分13分)已知椭圆的焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率.(1)求椭圆的标准方程;(2)过椭圆的右焦点作与坐标轴不垂直的直线,交椭圆于、两点,设点是线段上的一个动点,且,求的取值范围;(3)设点是点关于轴的对称点,在轴上是否存在一个定点,使得、、三点共线?若存在,求出定点的坐标,若不存在,请说明理由.
(本小题满分13分)有一座大桥既是交通拥挤地段,又是事故多发地段,为了保证安全,交通部门规定。大桥上的车距与车速和车长的关系满足:(为正的常数),假定车身长为,当车速为时,车距为2.66个车身长。(1)写出车距关于车速的函数关系式;(2)应规定怎样的车速,才能使大桥上每小时通过的车辆最多?
(本小题满分13分)△ABC的外接圆半径为1,角A,B,C的对边分别为a,b,c.向量=, =满足//.(1)求的取值范围;(2)若实数x满足abx=a+b,试确定x的取值范围.
(本小题满分13分)已知函数,的最大值是1且其图像经过点. (1)求的解析式; (2)已知,且,求的值
(本小题12分)设函数,其中a为非零常数(1)当a1时,求f(x)的单调区间(2)当时,不等式f(x)>2恒成立,求a的取值范围
(本小题12分)若F是椭圆的左焦点,A(-a,0), B(0,b), 椭圆的离心率为, 点D在x轴上,B,D,F三点确定的圆M恰好与直线l1:x+y+30相切(1)求椭圆的方程(2)过点A的直线l2与圆M交于P,Q两点,且,求直线l2的方程