请写出一元二次方程的求根公式,并用配方法推导这个公式。
某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)当销售单价为70元时,每天的销售利润是多少?(2)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式,并求出自变量的取值范围;(3)如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?(每天的总成本=每件的成本×每天的销售量)
如图,已知二次函数的图象经过A(2,0)、B(0,-6)两点.(1)求这个二次函数的解析式(2)设该二次函数的对称轴与轴交于点C,连接BA、BC,求∆ABC的面积.
某小区计划在一个长 40 米,宽 26 米的矩形场地ABCD 上修建三条同样宽的小路,使其中两条与AB平行,另一条与 AD平行,其余部分种草,如图若使每一块草坪的面积都为144 平方米,求小路的宽度.
如图1,P(2,2),点A在x轴正半轴上运动,点B在y轴上运动,且PA=PB.(1)求证:PA⊥PB;(2)若点A(8,0),求点B的坐标;(3)求OA – OB的值;(4)如图2,若点B在y轴正半轴上运动时,直接写出OA+OB的值.
如图1,在等边△ABC的边AC的延长线上取一点E,以CE为边作等边△CDE,使它 与△ABC位于直线AE的同侧. (1)同学们对图1进行了热烈的讨论,猜想出如下结论,你认为正确的有______(填序号). ①△ACD≌△BCE;②△ACP≌△BCQ; ③△DCP≌△ECQ; ④∠ARB=60°; ⑤△CPQ是等边三角形. (2)当等边△CED绕C点旋转一定角度后(如图2),(1)中有哪些结论还是成立的? 并对正确的结论分别予以证明.