如图,已知△ABC中,AD是高,AE是角平分线.(1)若∠B=20°,∠C=60°,则∠EAD=_______°;(2)若∠B=a°,∠C=b°(b>a),试通过计算,用a、b的代数式表示∠EAD的度数;(3)特别地,当△ABC为等腰三角形(即∠B=∠C)时,请用一句话概括此时AD和AE的位置关系:____.
今年植树节期间,某景观园林公司购进一批成捆的 A , B 两种树苗,每捆 A 种树苗比每捆 B 种树苗多10棵,每捆 A 种树苗和每捆 B 种树苗的价格分别是630元和600元,而每棵 A 种树苗和每棵 B 种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.
(1)求这一批树苗平均每棵的价格是多少元?
(2)如果购进的这批树苗共5500棵, A 种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进 A 种树苗和 B 种树苗各多少棵?并求出最低费用.
为了提高学生的综合素养,某校开设了五门手工活动课,按照类别分为: A "剪纸"、 B "沙画"、 C "葫芦雕刻"、 D "泥塑"、 E "插花".为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如图两幅不完整的统计图.
根据以上信息,回答下列问题:
(1)本次调查的样本容量为 ;统计图中的 a = , b = ;
(2)通过计算补全条形统计图;
(3)该校共有2500名学生,请你估计全校喜爱"葫芦雕刻"的学生人数.
解不等式组 1 2 x + 1 < 7 - 3 2 x , 3 x - 2 3 ⩾ x 3 + x - 4 4 , 并写出它的所有整数解.
如图,在菱形 ABCD 中, AB = AC ,点 E , F , G 分别在边 BC , CD 上, BE = CG , AF 平分 ∠ EAG ,点 H 是线段 AF 上一动点(与点 A 不重合).
(1)求证: ΔAEH ≅ ΔAGH ;
(2)当 AB = 12 , BE = 4 时.
求 ΔDGH 周长的最小值;
②若点 O 是 AC 的中点,是否存在直线 OH 将 ΔACE 分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为 1 : 3 .若存在,请求出 AH AF 的值;若不存在,请说明理由.
我们把方程 ( x - m ) 2 + ( y - n ) 2 = r 2 称为圆心为 ( m , n ) 、半径长为 r 的圆的标准方程.例如,圆心为 ( 1 , - 2 ) 、半径长为3的圆的标准方程是 ( x - 1 ) 2 + ( y + 2 ) 2 = 9 .在平面直角坐标系中, ⊙ C 与轴交于点 A , B ,且点 B 的坐标为 ( 8 , 0 ) ,与 y 轴相切于点 D ( 0 , 4 ) ,过点 A , B , D 的抛物线的顶点为 E .
(1)求 ⊙ C 的标准方程;
(2)试判断直线 AE 与 ⊙ C 的位置关系,并说明理由.