因式分解:x4 − 18x2 + 81
(本题14分)如图,⊙M与x轴交于A.B两点,其坐标分别为、,直径CD⊥x轴于N,抛物线经过A.B.D三点,(1)求m的值及点D的坐标.(2)若直线CE切⊙M于点C,G在直线CE上,已知点G的横坐标为3. 求G的纵坐标(3)对于(2)中的G,是否存在过点G的直线,使它与(1)中抛物线只有一个交点,请说明理由.(4)对于(2)中的G直线FG切⊙M于点F,求直线DF的解析式.
(本题12分)如图,矩形ABOD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数的图象分别相交于点E,F,且DE=2.过点E作EH⊥x轴于点H,过点F作FG⊥EH于点G.回答下面的问题:(1)该反比例函数的解析式是什么?(2)当四边形AEGF为正方形时,点F的坐标时多少?(3)阅读合作学习内容,请解答其中的问题;小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?”针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由.
如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,其中点A(5,4),B(1,3),将△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出△A1OB1;(2)在旋转过程中点B所经过的路径长为 (直接写答案);(3)求在旋转过程中线段AB ,OB扫过的图形的面积和.
(本题10分) 如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.(1)分别求出线段AP、CB的长;(2)如果OE=5,求证:DE是⊙O的切线;(3)如果tan∠E=,求DC的长
(本题10分)在四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.(1)求证:AC⊥ED(2)求证:△ACD≌△ACE(3)请猜测CD与DH的数量关系,并证明