在一个不透明的口袋中有四个手感完全一致的小球,四个小球上分别标有数字-4,-1, 2, 5;(1)从口袋中随机摸出一个小球,其上标明的数是奇数的概率是多少?(2)从口袋中随机摸出一个小球不放回,再从中摸出第二个小球:①请用表格或树状图表示先后摸出的两个小球所标数字组成的可能结果?②求依次摸出的两个小球所标数字为横坐标,纵坐标的点位于第四象限的概率.
阅读下列材料将图1的平行四边形用一定方法可分割成面积相等的八个四边形,如图2,再将图2中的八个四边形适当组合拼成两个面积相等且不全等的平行四边形.(要求:无缝隙且不重叠)请你参考以上做法解决以下问题:(1)将图4的平行四边形分割成面积相等的八个三角形;(2)将图5的平行四边形用不同于(1)的分割方案,分割成面积相等的八个三角形,再将这八个三角形适当组合拼成两个面积相等且不全等的平行四边形,类比图2,图3,用数字1至8标明.(3)设每个小格点正方形的边长为1,请你直接写出在(2)中拼成的两个不全等的平行四边形的周长。
如图,AB为⊙O的直径,点C在上,点D在AB的延长线上于,且AC=CD,已知∠D=30°. ⑴判断CD与⊙O的位置关系,请说明理由。⑵若弦CF⊥AB,垂足为E,且CF=,求图中阴影部分的面积.
如图24,已知抛物线过点C(3,8),与轴交于A,B两点,与y轴交于点D(0,5). (1)求该二次函数的关系式; (2)求该抛物线的顶点M的坐标,并求四边形ABMD的面积;
热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为50°热气球与高楼的水平距离为60 m,这栋高楼有多高?(结果精确到0. 1 m,参考数据:sin50°≈0.78,cos50°≈0.64 ,tan50°≈1.19 ,≈1.73 )
在课外活动时间,小王、小丽、小华做“互相踢踺子”游戏,踺子从一人传到另一人就记为踢一次.(1)若从小丽开始,经过两次踢踺后,踺子踢到小华处的概率是多少?(2)若从小丽开始踢,经过三次踢踺后,小丽认为踢到她的可能性最大,你同意她的观点吗?请说明理由.