如图,在△ABC中,AC=BC,∠ACB=90°,点D为△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,请判断ME、BD的数量关系,并给出证明.
解方程:.
(本题每小题6分,满分12分.)(1)计算:|-|÷|-| -×.(2)先化简,再求值:,其中,y=-2.
用棋子摆出下列一组三角形,三角形每边有枚棋子,每个三角形的棋子总数是.按此规律推断,当三角形边上有枚棋子时,该三角形的棋子总数等于 :
(1).如图①,已知AB∥CD,求证:∠A+∠C=∠E(2)直接写出当点E的位置分别如图②、图③、图④的情形时∠A、∠C、∠E之间的关系.②中∠C、∠A、∠AEC之间的关系为 ;③中∠C、∠A、∠AEC之间的关系为 ;④中∠C、∠A、∠AEC之间的关系为 ;(3)在(2)中的3中情形中任选一种进行证明.
如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG .求证:(1)BG=CF;(2)DG=CF