(本小题满分14分)已知函数.(Ⅰ)函数在区间上是增函数还是减函数?证明你的结论;(Ⅱ)当时,恒成立,求整数的最大值;(Ⅲ)试证明:()。
(本小题满分10分)(选修4-1:几何证明选讲) 如图:是内接于⊙O,AB=AC,直线MN切⊙O于点C,弦BD//MN,AC与BD相交于点E。 (1)求证:; (2)若AB=6,BC=4,求AE。
(本小题满分12分)已知函数,. (1)若函数是单调递增函数,求实数的取值范围; (2)当时,两曲线有公共点P,设曲线在P处的切线分别为,若切线与轴围成一个等腰三角形,求P点坐标和的值; (3)当时,讨论关于的方程的根的个数。
(本小题满分12分)设A、B分别是轴,轴上的动点,P在直线AB上,且 (1)求点P的轨迹E的方程; (2)已知E上定点K(-2,0)及动点M、N满足,试证:直线MN必过轴上的定点。
(本小题满分12分) (1)连续抛掷两枚正方体的骰子(它们的六个面分别标有数字1,2,3,4,5,6),记所得朝上的面的点数分别为,过坐标原点和点P()的直线的倾斜角为 ,求的概率; (2)若,且,过坐标原点和点P()的直线的斜率为,求的概率。
(本小题满分12分)如图,已知三棱锥,,为中点,为中点,且是正三角形,. (1)求证:平面平面; (2)求三棱锥的体积.