已知关于的一次函数(1)设集合和,分别从集合和中随机取一个数作为,,求函数是增函数的概率;(2)若实数,满足条件,求函数的图象不经过第四象限的概率.
在二项式的展开式中 (1)求展开式中含项的系数; (2)如果第项和第项的二项式系数相等,试求的值.
复数,若,求的值.
已知函数,,且点处取得极值. (Ⅰ)求实数的值; (Ⅱ)若关于的方程在区间上有解,求的取值范围; (Ⅲ)证明:.
已知椭圆的中心在坐标原点,焦点在轴上,椭圆右焦点,且 (Ⅰ)求椭圆的标准方程; (Ⅱ)若直线:与椭圆相交于,两点(都不是顶点),且以为直径 的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.
设函数分别在、处取得极小值、极大值.平面上点、的坐标分别为、,该平面上动点满足,点是点关于直线的对称点. (Ⅰ)求点、的坐标; (Ⅱ)求动点的轨迹方程.