已知函数,其中.(Ⅰ)当时,求曲线在原点处的切线方程;(Ⅱ)求的单调区间;(Ⅲ)若在上存在最大值和最小值,求的取值范围.
已知是函数图象上一点,过点的切线与轴交于,过点作轴的垂线,垂足为. (1)求点坐标; (2)若,求的面积的最大值,并求此时的值.
已知函数.(Ⅰ)求的定义域;Ⅱ)证明:函数在定义域内单调递增.
已知数列{an}满足:a1=,且an= (1)求数列{an}的通项公式; (2)证明:对于一切正整数n,不等式a1·a2·……an<2·n!
已知二次函数的图像经过坐标原点,其导函数为,数列的前n项和为,点均在函数的图像上。 (Ⅰ)、求数列的通项公式; (Ⅱ)、设,是数列的前n项和,求使得对所有都成立的最小正整数m;
已知上是减函数,且。 (1)求的值,并求出和的取值范围。 (2)求证。 (3)求的取值范围,并写出当取最小值时的的解析式。