(本小题满分10分)己知圆的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)将圆的参数方程化为普通方程,将圆的极坐标方程化为直角坐标方程;(2)圆,是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.
为迎接建党90周年,某班开展了一次“党史知识竞赛”,竞赛分初赛和决赛两个阶段进行,在初赛后,把成绩(满分为100分,分数均为整数)进行统计,制成如图频率分布表:(1)求的值;(2)决赛规则如下:为每位参加决赛的选手准备四道题目,选手对其依次作答,答对两道就终止答题,并获得一等奖,若题目答完仍然只答对一道,则获得二等奖.某同学进入决赛,每道题答对的概率P的值恰好与频率分布表中不少于90分的频率的值相同.设该同学决赛中答题个数为X,求X的分布列以及X的数学期望.
如图所示,在矩形中,的中点,F为BC的中点,O为AE的中点,以AE为折痕将△ADE向上折起,使D到P点位置,且.(1)求证:(2)求二面角E-AP-B的余弦值.
成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列中的、、.(1)求数列的通项公式; (2)数列的前n项和为.
(本小题满分12分)如图直线l与x轴、y轴的正半轴分别交于A(8,0)、B(0,6)两点,P为直线l上异于A、B两点之间的一动点. 且PQ∥OA交OB于点Q.(1)若和四边形的面积满足时,请你确定P点在AB上的位置,并求出线段PQ的长;(2)在x轴上是否存在点M,使△MPQ为等腰直角三角形,若存在,求出点与的坐标;若不存在,说明理由.
(本小题满分12分)如图,直三棱柱ABC—A1B1C1中,AC=BC=1,∠ACB=90°,AA1=,D是A1B1中点.(1)求证:C1D⊥AB1 ;(2)当点F在BB1上什么位置时,会使得AB1⊥平面C1DF?并证明你的结论.