(本小题满分12分)如图直线l与x轴、y轴的正半轴分别交于A(8,0)、B(0,6)两点,P为直线l上异于A、B两点之间的一动点. 且PQ∥OA交OB于点Q.(1)若和四边形的面积满足时,请你确定P点在AB上的位置,并求出线段PQ的长;(2)在x轴上是否存在点M,使△MPQ为等腰直角三角形,若存在,求出点与的坐标;若不存在,说明理由.
已知是双曲线的两个焦点,点在双曲线上,且,求证:
设命题:是减函数,命题:关于的不等式的解集为,如果“或”为真命题,“且”为假命题,求实数的取值范围.
写出命题“如果一个整数的末位数是0,则这个整数可以被5整除”的逆命题、否命题、逆否命题,并判断其真假
已知椭圆的离心率,过右焦点的直线与椭圆相交于两点,当直线的斜率为1时,坐标原点到直线的距离为.(1)求椭圆的方程(2)椭圆上是否存在点,使得当直线绕点转到某一位置时,有成立?若存在,求出所有满足条件的点的坐标及对应直线方程;若不存在,请说明理由。
已知抛物线, 过点引一弦,使它恰在点被平分,求这条弦所在的直线的方程.