已知椭圆的离心率,过右焦点的直线与椭圆相交于两点,当直线的斜率为1时,坐标原点到直线的距离为.(1)求椭圆的方程(2)椭圆上是否存在点,使得当直线绕点转到某一位置时,有成立?若存在,求出所有满足条件的点的坐标及对应直线方程;若不存在,请说明理由。
(本小题满分12分)已知等比数列中,,. (1)求数列的通项公式; (2)若,分别为等差数列的第3项和第5项,试求数列的通项公式及前项和.
(本小题满分10分)等比数列{}的前n 项和为,已知,,成等差数列. (1)求{}的公比q; (2)若-=3,求
已知函数 (1)若函数在上无零点,请你探究函数在上的单调性; (2)设,若对任意的,恒有成立,求实数的取值范围.
若满足,则称为的不动点. (1)若函数没有不动点,求实数的取值范围; (2)若函数的不动点,求的值; (3)若函数有不动点,求实数的取值范围.
在四棱锥中,底面是边长为的菱形,,面,,,分别为,的中点. (1)求证:面; (2)求二面角的大小的正弦值; (3)求点到面的距离.