(本小题满分12分)已知抛物线的顶点为坐标原点,焦点为.(Ⅰ)求抛物线的方程;(Ⅱ)若点为抛物线的准线上的任意一点,过点作抛物线的切线与,切点分别为,求证:直线恒过某一定点;(Ⅲ)分析(Ⅱ)的条件和结论,反思其解题过程,再对命题(Ⅱ)进行变式和推广.请写出一个你发现的真命题,不要求证明(说明:本小题将根据所给出的命题的正确性和一般性酌情给分).
函数的定义域为A,值域为B,求.
计算(Ⅰ)(Ⅱ)
设分别是椭圆的左右焦点,过左焦点作直线与椭圆交于不同的两点、. (Ⅰ)若,求的长; (Ⅱ)在轴上是否存在一点,使得为常数?若存在,求出点的坐标;若不存在,说明理由
四棱锥中,面,为菱形,且有,,∠,为中点. (Ⅰ)证明:面; (Ⅱ)求二面角的平面角的余弦值.
已知数列是等差数列,且,. (Ⅰ)求数列的通项公式; (Ⅱ)令,求数列前项和公式