(本小题12分)如图,设抛物线:的焦点为F,为抛物线上的任一点(其中≠0),过P点的切线交轴于点. (1)若,求证;(2)已知,过M点且斜率为的直线与抛物线交于A、B两点,若,求的值.
已知函数. (Ⅰ)若曲线在点处的切线与直线平行,求实数的值; (Ⅱ)若函数在处取得极小值,且,求实数的取值范围.
已知函数,钝角(角对边为)的角满足. (Ⅰ)求函数的单调递增区间; (Ⅱ)若,求.
已知数列的前项和为满足. (Ⅰ)求数列的通项公式; (Ⅱ)求数列的前项和.
如图,在四棱锥中,底面为直角梯形,且,,平面底面,为的中点,是棱的中点,. (Ⅰ)求证:平面; (Ⅱ)求三棱锥的体积.
已知数列的前项和为满足. (Ⅰ)函数与函数互为反函数,令,求数列的前项和; (Ⅱ)已知数列满足,证明:对任意的整数,有.