分解因式: x3-2x2y+xy2.
如图,抛物线 y=a x 2 -2ax+c 的图象经过点 C(0,-2) ,顶点 D 的坐标为 (1,- 8 3 ) ,与 x 轴交于 A 、 B 两点.
(1)求抛物线的解析式.
(2)连接 AC , E 为直线 AC 上一点,当 ΔAOC∽ΔAEB 时,求点 E 的坐标和 AE AB 的值.
(3)点 F(0,y) 是 y 轴上一动点,当 y 为何值时, 5 5 FC+BF 的值最小.并求出这个最小值.
(4)点 C 关于 x 轴的对称点为 H ,当 5 5 FC+BF 取最小值时,在抛物线的对称轴上是否存在点 Q ,使 ΔQHF 是直角三角形?若存在,请求出点 Q 的坐标;若不存在,请说明理由.
如图,在 ⊙O 中, AB 是直径, BC 是弦, BC=BD ,连接 CD 交 ⊙O 于点 E , ∠BCD=∠DBE .
(1)求证: BD 是 ⊙O 的切线.
(2)过点 E 作 EF⊥AB 于 F ,交 BC 于 G ,已知 DE=2 10 , EG=3 ,求 BG 的长.
某县有 A 、 B 两个大型蔬菜基地,共有蔬菜700吨.若将 A 基地的蔬菜全部运往甲市所需费用与 B 基地的蔬菜全部运往甲市所需费用相同.从 A 、 B 两基地运往甲、乙两市的运费单价如下表:
甲市(元 / 吨)
乙市(元 / 吨)
A 基地
20
25
B 基地
15
24
(1)求 A 、 B 两个蔬菜基地各有蔬菜多少吨?
(2)现甲市需要蔬菜260吨,乙市需要蔬菜440吨.设从 A 基地运送 m 吨蔬菜到甲市,请问怎样调运可使总运费最少?
如图,已知 ∠AOB=90° , ∠OAB=30° ,反比例函数 y=- 3 x (x<0) 的图象过点 B(-3,a) ,反比例函数 y= k x (x>0) 的图象过点 A .
(1)求 a 和 k 的值;
(2)过点 B 作 BC//x 轴,与双曲线 y= k x 交于点 C .求 ΔOAC 的面积.
如图,某地有甲、乙两栋建筑物,小明于乙楼楼顶 A 点处看甲楼楼底 D 点处的俯角为 45° ,走到乙楼 B 点处看甲楼楼顶 E 点处的俯角为 30° ,已知 AB=6m , DE=10m .求乙楼的高度 AC 的长.(参考数据: 2 ≈1.41 , 3 ≈1.73 ,精确到 0.1m . )