如图,在平面直角坐标系xOy中,二次函数y=﹣x2+bx+c的图象与x轴相交于点A(4,0),与y轴相交于点B(0,4),动点C是从点A出发,向O点运动,到达0点时停止运动,过点C作EC⊥x轴,交直线AB于点D,交抛物线于点E.(1)求二次函数的解析式;(2)连接OE交AB于F点,连接AE,在动点C的运动过程中,若△AOF的面积是△AEF面积的2倍,求点C的坐标?(3)在动点C的运动过程中,△DEF能否为等腰三角形?若能,请直接写出点F的坐标;若不能,请说明理由.
先化简,再求值:÷ ,其中.
甲乙两地相距400km,一辆轿车从甲地出发,以80km/h的速度匀速驶往乙地.0.5h后,一辆货车从乙地出发匀速驶往甲地.货车出发2.5h后与轿车在途中相遇.此后,两车继续行驶,并各自到达目的地.设轿车行驶的时间为x(h),两车距乙地的距离为y(km).(1)两车距乙地的距离与x之间的函数关系,在同一坐标系中画出的图象是( )(2)求货车距乙地的距离y1与x之间的函数关系式.(3)在甲乙两地间,距乙地300km处有一个加油站,两车在行驶过程中都曾在该加油站加油(加油时间忽略不计).求两车加油的间隔时间是多少?
随着青奥会的临近,青奥特许商品销售逐渐火爆.甲、乙两家青奥商品专卖店一月份销售额分别为10万元和15万元,三月份销售额甲店比乙店多10万元.已知甲店二、三月份销售额的月平均增长率是乙店二、三月份月平均增长率的2倍,求甲店、乙店这两个月的月平均增长率各是多少?
在一个不透明的盒子中,有三张除颜色外都相同的卡片,一张两面都是红色,一张两面都是黑色,另一张一面是红色,一面是黑色.(1)从盒中任意抽出一张卡片,求至少有一面是红色的概率;(2)小明和小颖玩抽卡片的游戏,规则如下:从盒中任意抽出一张卡片,放在桌子上,一面朝上,猜另一面的颜色.如果另一面的颜色与朝上一面的颜色相同,则小颖胜,反之,则小明胜.游戏共玩了5次,其中小明胜2次.因此,小明认为:在这个游戏中,自己获胜的概率一定是,小颖获胜的概率一定是.而小颖则认为:假设抽出的卡片朝上一面是红色,则这张一定不可能是两面黑色的卡片,它或者是两面红,或者是两面不同,相同与不同机会各占一半,所以自己和小明获胜的概率都是.请分别评述小明与小颖的观点是否正确,并判断这个游戏公平吗?简要说明理由.
(1)求二次函数y=x2-4x+1图象的顶点坐标,并指出当x在何范围内取值时,y随x的增大而减小;(2)若二次函数y=x2-4x+c的图象与坐标轴有2个交点,求字母c应满足的条件.