(本小题满分11分)(理科做)如图1,在直角梯形中,,,,.把沿对角线折起到的位置,如图2所示,使得点在平面上的正投影恰好落在线段上,连接,点分别为线段的中点.(1)求证:平面平面;(2)求直线与平面所成角的正弦值;(3)在棱上是否存在一点,使得到点四点的距离相等?请说明理由.(文科做)设函数.(1)求函数f(x)的单调区间和极值;(2)若对任意的不等式| f′(x)|≤a恒成立,求a的取值范围.
(本小题满分12分)已知是x,y轴正方向的单位向量,设, 且满足 (1)、求点P(x,y)的轨迹E的方程. (2)、若直线过点且法向量为,直线与轨迹E交于两点.点,无论直线绕点怎样转动, 是否为定值?如果是,求出定值;如果不是,请说明理由.并求实数的取值范围;
(本小题满分12分)如图,在四棱锥中,底面四边长为1的菱形,, ,,为的中点,为的中点 (Ⅰ)证明:直线; (Ⅱ)求异面直线AB与MD所成角的大小; (Ⅲ)求点B到平面OCD的距离。
(本小题满分12分) 设数列的前项和为.已知,,. (Ⅰ)设,求数列的通项公式; (Ⅱ)若,,求的取值范围.。
(本小题满分12分) 已知函数有两个实根为。 (1)求函数的解析式; (2)解关于的不等式
(本小题满分10分) 已知函数 (1)求函数的最小正周期和图象的对称轴方程; (2)求函数在区间上的值域。