如图,某单位准备修建一个面积为600平方米的矩形场地(图中)的围墙,且要求中间用围墙隔开,使得为矩形,为正方形,设米,已知围墙(包括)的修建费用均为800元每米,设围墙(包括)的修建总费用为元。(1)求出关于的函数解析式;(2)当为何值时,设围墙(包括)的的修建总费用最小?并求出的最小值。
解关于的不等式:
已知函数. (1)若不等式的解集为,求实数的值; (2)在(1)的条件下,若对一切实数恒成立,求实数的取值范围。
设,求证:
已知函数在处取得极值. (1)讨论和是函数的极大值还是极小值; (2)过点作曲线的切线,求此切线方程.[
设函数. (1)求的单调区间; (2)若当时,不等式恒成立,求实数的取值范围.