(本小题满分12分)设椭圆的左右焦点分别为、,是椭圆上的一点,,坐标原点到直线的距离为.(1)求椭圆的方程; (2)设是椭圆上的一点,,连接QN的直线交轴于点,若,求直线的斜率.
(本小题满分12分)已知实数,设P:函数在R上单调递减, Q:关于的一元二次方程有两个不相等的实数根, 如果命题“”为真命题,命题“”为假命题,求实数的取值范围.
设函数 (1)若上的最大值 (2)若在区间[1,2]上为减函数,求a的取值范围。 (3)若直线为函数的图象的一条切线,求a的值。
设直线与抛物线交于不同两点A、B,F为抛物线的焦点。 (1)求的重心G的轨迹方程; (2)如果的外接圆的方程。
已知数列满足:已知存在常数p,q使数列为等 比数列。 (1)求常数p、q及的通项公式; (2)解方程 (3)求
(本小题满分12分) 已知矩形ABCD所在平面,PA=AD=,E为线段PD上一点。 (1)当E为PD的中点时,求证: (2)是否存在E使二面角E—AC—D为30°?若存在,求,若不存在,说明理由。