(本小题满分12分)各项均不相等的等差数列的前四项的和为,且成等比数列.(1)求数列的通项公式与前n项和;(2)记为数列的前n项和,求
(本小题满分13分)已知函数(Ⅰ)求函数在(1, )的切线方程(Ⅱ)求函数的极值(Ⅲ)对于曲线上的不同两点,如果存在曲线上的点,且,使得曲线在点处的切线,则称为弦的陪伴切线.已知两点,试求弦的陪伴切线的方程;
(本小题满分12分)一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取一个,求:(Ⅰ)连续取两次都是白球的概率;(Ⅱ)若取一个红球记2分,取一个白球记1分,取一个黑球记0 分,连续取三次分数之和为4分的概率.
(本小题满分12分)已知四棱锥底面ABCD是矩形,PA⊥平面ABCD, AD=2,AB=1,E.F分别是线段AB.BC的中点,(1)证明:PF⊥FD;(2)在PA上找一点G,使得EG∥平面PFD;.(3)若与平面所成的角为,求二面角的余弦值.
已知△的三个内角、、所对的边分别为、、.,且.(1)求的大小;(2)若.求.
已知数列的前项和为,且满足。(1)问:数列是否为等差数列?并证明你的结论;(2)求;(3)求证:。