(本小题满分12分)已知四棱锥底面ABCD是矩形,PA⊥平面ABCD, AD=2,AB=1,E.F分别是线段AB.BC的中点,(1)证明:PF⊥FD;(2)在PA上找一点G,使得EG∥平面PFD;.(3)若与平面所成的角为,求二面角的余弦值.
.(本小题满分12分) 如图5所示的多面体是由底面为的长方体被截面所截 而得到的,其中. (1)求; (2)求点到平面的距离.
(本小题满分10分) 已知p:≤2,q:x2-2x+1-m2≤0(m>0),若非p是非q的必要不充分条件,求实数m的取值范围.
(本小题满分12分) 已知x,y之间的一组数据如下表: (1)分别从集合A={1,3,6,7,8},B={1,2,3,4,5}中各取一个数x,y,求x+y≥10的概率; (2)对于表中数据,甲、乙两同学给出的拟合直线分别为y=x+1与y=x+,试根据残差平方和:(yi-i)2的大小,判断哪条直线拟合程度更好.
(本小题满分12分) 已知定义域为的函数同时满足以下三个条件: ①对任意的,总有; ②; ③若且,则有成立,则称为“友谊函数”。 (1)若已知为“友谊函数”,求的值; (2)函数在区间上是否为“友谊函数”?并给出理由; (3)已知为“友谊函数”,且 ,求证:。
(本小题满分12分) 已知在时有极值0. (1)求常数a、b的值; (2)求的单调区间.