(本小题满分12分)已知四棱锥底面ABCD是矩形,PA⊥平面ABCD, AD=2,AB=1,E.F分别是线段AB.BC的中点,(1)证明:PF⊥FD;(2)在PA上找一点G,使得EG∥平面PFD;.(3)若与平面所成的角为,求二面角的余弦值.
解不等式
在极坐标系中,求圆的圆心到直线的距离.
求直线在矩阵的变换下所得曲线的方程
如图,已知点为的斜边的延长线上一点,且与的外接圆相切,过点作的垂线,垂足为,若,,求线段的长.
已知函数,.(1)设.① 若函数在处的切线过点,求的值;② 当时,若函数在上没有零点,求的取值范围;(2)设函数,且,求证:当时,.