(本小题满分12分)已知圆,直线,。(1)证明:不论取什么实数,直线与圆恒交于两点;(2)求直线被圆截得的弦长最小时的方程.
在正方体中,E、F、G、H、M、N分别是正方体六个面的中心.求证:平面EFG//平面HMN.
已知圆的圆心在直线上,圆与直线相切, 并且圆截直线所得弦长为,求圆的方程.
已知两点,,求以为直径的圆的方程,并判断、、与圆的位置关系.
已知圆C:,直线: (1)求证:直线过定点; (2)判断该定点与圆的位置关系; (3)当为何值时,直线被圆C截得的弦最长。
过点作直线,当斜率为何值时,直线与圆有公共点.