(本小题满分12分)已知函数 (1)用单调性的定义判断函数在 上的单调性并加以证明; (2)设在的最小值为,求 的解析式.
椭圆>>与直线交于、两点,且,其中为坐标原点.(1)求的值;(2)若椭圆的离心率满足≤≤,求椭圆长轴的取值范围.
某校高三数学竞赛初赛考试后,对90分以上(含90分)的成绩进行统计,其频率分布直方图如图所示.若130~140分数段的人数为2人.(1)求这组数据的平均数M;(2)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成帮扶学习小组.若选出的两人成绩之差大于20,则称这两人为“黄金搭档组”,试求选出的两人为“黄金搭档组”的概率.
椭圆的两个焦点F1、F2,点P在椭圆C上,且PF1⊥F1F2,,|PF1|=,|PF2|=.(1)求椭圆C的方程;(2)若直线L过圆(x+2)2+(y-1)2=5的圆心M交椭圆于A、B两点,且A、B关于点M对称,求直线L的方程。
已知双曲线与椭圆共焦点,且以为渐近线,求双曲线方程.
若p:q:且是的充分不必要条件,求实数的取值范围.