某校高三数学竞赛初赛考试后,对90分以上(含90分)的成绩进行统计,其频率分布直方图如图所示.若130~140分数段的人数为2人.(1)求这组数据的平均数M;(2)现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成帮扶学习小组.若选出的两人成绩之差大于20,则称这两人为“黄金搭档组”,试求选出的两人为“黄金搭档组”的概率.
(本小题满分10分)选修4-4:坐标系与参数方程已知直线C1: (t为参数),圆C2: (θ为参数).(I)当α=时,求C1与C2的交点的坐标;(II)过坐标原点O作C1的垂线,垂足为A,P为OA的中点.当α变化时,求P点轨迹的参数方程,并指出它是什么曲线.
.选修4-1:几何证明选讲如图,直线经过⊙上的点,并且⊙交直线于,,连接. (I)求证:直线是⊙的切线;(II)若⊙的半径为,求的长.
(本小题满分12分)已知函数。(Ⅰ)讨论函数的单调区间;(Ⅱ)若在恒成立,求的取值范围。
(本小题满分12分)(Ⅰ)一动圆与圆相外切,与圆相内切求动圆圆心的轨迹曲线E的方程,并说明它是什么曲线。(Ⅱ)过点作一直线与曲线E交与A,B两点,若,求此时直线的方程。
(本小题满分12分)如图所示的几何体是由以正三角形为底面的直棱柱被平面所截而得. ,为的中点.(Ⅰ)当时,求平面与平面的夹角的余弦值;(Ⅱ)当为何值时,在棱上存在点,使平面?