(本小题满分12分)已知抛物线,圆,过点作直线,自上而下依次与上述两曲线交于点(如图所示),.(Ⅰ)求;(Ⅱ)作关于轴的对称点,求证: 三点共线;(Ⅲ)作关于轴的对称点,求到直线的距离的最大值.
(本小题满分12分)如图,四边形与均为菱形, ,且, (Ⅰ)求证:平面; (Ⅱ)求证:AE∥平面FCB; (Ⅲ)求二面角的余弦值。
(本小题满分12分)已知等差数列{}的公差,它的前n项和为,若,且成等比数列, (Ⅰ)求数列{}的通项公式; (Ⅱ)若数列{}的前n项和为,求证:。
(本小题满分12分)在锐角△ABC中,角A,B,C的对边分别是,且满足, (Ⅰ)求角的大小; (Ⅱ)若,求的取值范围。
(本小题满分10分)在直角坐标系xOy中,以原点O为圆心的圆与直线x-y-4=0相切, (Ⅰ)求圆O的方程; (Ⅱ)若已知点P(3,2),过点P作圆O的切线,求切线的方程。
(本小题满分15分) 若S是公差不为0的等差数列的前n项和,且成等比数列。 (1)求等比数列的公比; (2)若,求的通项公式; (3)在(2)的条件下,设,是数列的前n项和,求使得对所有都成立的最小正整数。