(本小题满分12分)如图,设P是圆上的动点,点D是P在x轴上的摄影,M为PD上一点,且(Ⅰ)当P在圆上运动时,求点M的轨迹C的方程;(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度
其中, 求的最小正周期及单调减区间.
如图:中,E是AD中点,BE∩AC=F,,求的值.
已知椭圆:的一个焦点为且过点. (Ⅰ)求椭圆E的方程; (Ⅱ)设椭圆E的上下顶点分别为A1,A2,P是椭圆上异于A1,A2的任一点,直线PA1,PA2分别交轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T. 证明:线段OT的长为定值,并求出该定值.
已知函数. (Ⅰ)当时,求证:函数在上单调递增; (Ⅱ)若函数有三个零点,求的值.
已知数列是等差数列,且满足:,;数列满足. (1)求和; (2)记数列,若的前项和为,求证.