如图在菱形ABCD中,AE⊥BC于E点,EC=1,sinB=,求四边形AECD的周长.
如图,AB为⊙O的直径,AD与⊙O相切于一点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB. ⑴求证:BC为⊙O的切线; ⑵若,AD=2,求线段BC的长.
已知甲同学手中藏有三张分别标有数字,,1的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片的外形相同,现从甲、乙两人手中各任取一张卡片,并将它们的数字分别记为a、b. ⑴请你用树形图或列表法列出所有可能的结果; ⑵现制订这样一个游戏规则,若所选出的a、b能使ax2+bx+1=0有两个不相等的实数根,则称甲胜;否则乙胜,请问这样的游戏规则公平吗?请你用概率知识解释.
为丰富学生的学习生活,某校九年级1班组织学生参加春游活动,所联系的旅行社收费标准如下:
如果人数超过25人,每增加1人,人均活动费用降低2元,但人均活动费用不得低于75元。
如图,在四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,AF⊥DF于F,△BEA旋转后能与△DFA重叠. ⑴△BEA绕_______点________时针方向旋转_______度能与△DFA重合; ⑵若AE=cm,求四边形AECF的面积.
已知关于x的方程x2-2(k-1)x+k2=0有两个实数根x1,x2. ⑴求k的取值范围; ⑵若|x1+x2|=x1x2-1,求k的值.