(本小题满分10分)如图,直线AB与坐标轴分别交于点A、点B,且OA、OB的长分别为方程x2-6x+8=0的两个根(OA<OB),点C在y轴上,且OA︰AC=1:2,D(3,0)直线CD垂直于直线AB于点P,交x轴于点D。(1)求出点A、点B的坐标。(2)请求出直线CD的解析式。(3)若点M为坐标平面内任意一点,在直线AB上是否存在这样的点M,使以点B、D、M为顶点的三角形与△AOB相似,若存在,请直接写出点M的坐标;若不存在,请说明理由。
定义:底与腰的比是的等腰三角形叫做黄金等腰三角形. 如图,已知△ABC中,AB=BC,∠C=36°,BA1平分∠ABC交AC于A1. (1)=AA1•A C; (2)探究:△ABC是否为黄金等腰三角形?请说明理由;(提示:此处不妨设AC=1) (3)应用:已知AC=a,作A1B1∥AB交BC于B1,B1A2平分∠A1B1C交AC于A2,作A2B2∥AB交B2,B2A3平分∠A2B2C交AC于A3,作A3B3∥AB交BC于B3,…,依此规律操作下去,用含a,n的代数式表示An﹣1An.(n为大于1的整数,直接回答,不必说明理由)
如图.抛物线y=x2-4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y="x+" m与对称轴交于点Q. (1)这条抛物线的对称轴是 ,直线PQ与x軸所夹锐角的度数是 , (2)若两个三角形面积满足,求m的値: (3)当点P在x軸下方的抛物线上时.过点C(2,2)的直线AC与直线PQ交于点D,求: PD+DQ的最大值;②PDDQ的最大值.
已知四边形ABCD内接于⊙O,∠ADC=90°,∠DCB<90°,对角线AC平分∠DCB ,延长DA,CB相交于点E. (1)如图1,EB=AD,求证:△ABE是等腰直角三角形; (2)如图2,连接OE,过点E作直线EF,使得∠OEF=30°,当∠ACE≥30°时,判断直线EF与⊙O的位置关系,并说明理由.
图(1)是一个蒙古包的照片,这个蒙古包可以近似看成是圆锥和圆柱组成的几何体,如图(2)所示. (1)请画出这个几何体的俯视图; (2)图(3)是这个几何体的正面示意图,已知蒙古包的顶部离地面的高度EO1=6米,圆柱部分的高OO1=4米,底面圆的直径BC=8米,求∠EAO的度数(结果精确到0.1°).
如图,一条河的两岸l1,l2互相平行,在一次综合实践活动中,小颖去测量这条河的宽度,先在对岸l1上选取一个点A,然后在河岸l2时选择点B,使得AB与河岸垂直,接着沿河岸l2走到点C处,测得BC=60米,∠BCA=62°,请你帮小颖算出河宽AB(结果精确到1米).(参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)