(本小题满分12分)设函数定义在R上,对于任意实数,恒有,且当时,(1)求证:且当时,(2)求证:在R上是减函数;(3)设集合,,且,求实数的取值范围。
(本小题满分12分)某普通高中高三年级共有人,分三组进行体质测试,在三个组中男、女生人数如下表所示.已知在全体学生中随机抽取名,抽到第二、三组中女生的概率分别是、.
(1)求,,的值;(2)为了调查学生的课外活动时间,现从三个组中按的比例抽取学生进行问卷调查,三个组被选取的人数分别是多少?(3)若从(2)中选取的学生中随机选出两名学生进行访谈,求参加访谈的两名学生“来自两个组”的概率.
(本小题满分12分)已知三棱柱中,侧棱垂直于底面,,,,,点在上.(1)若是中点,求证:平面;(2)当时,求三棱锥的体积.
(本小题满分12分)已知数列是等差数列,,.(1)求数列的通项公式;(2)设,求数列的前项和.
(本小题满分10分)选修4-5:不等式选讲设函数.(1)解不等式;(2)若对一切实数均成立,求的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,以原点为极点,轴的正半轴为极轴建立坐标系.已知曲线(),过点的直线的参数方程为(是参数),直线与曲线分别交于、两点.(1)写出曲线和直线的普通方程;(2)若,,成等比数列,求的值.