已知奇函数在定义域上单调递减,求满足的实数的取值范围.
调查某初中1000名学生的肥胖情况,得下表:
已知从这批学生中随机抽取1名学生,抽到偏瘦男生的概率为0.15。 (1)求的值; (2)若用分层抽样的方法,从这批学生中随机抽取50名,问应在肥胖学生中抽多少名? (3)已知,,肥胖学生中男生不少于女生的概率。
数列的前项和记为,,点在直线上,. (Ⅰ)当实数为何值时,数列是等比数列? (Ⅱ)在(Ⅰ)的结论下,设,是数列的前项和,求的值.
已知函数的最大值为,小正周期为. (Ⅰ)求:的解析式; (Ⅱ)若的三条边为,,,满足,边所对的角为.求角的取值范围及函数的值域.
在区间和分别各取一个数,记为m和n,求方程表示焦点在x轴上的椭圆的概率.
已知函数 (I)试判断函数上单调性并证明你的结论; (Ⅱ)若对于恒成立,求正整数的最大值; (III)求证: