证明函数f(x)=在区间[1,+∞)上是减函数.
(本小题满分12分)在某次考试中,从甲乙两个班各抽取10名学生的数学成绩进行统计分析,两个班成绩的茎叶图如图所示,成绩不小于90分的为及格。(1)用样本估计总体,请根据茎叶图对甲乙两个班级的成绩进行比较。(2)求从甲班10名学生和乙班10名学生中各抽取一人,已知有人及格的条件下乙班同学不及格的概率;(3)从甲班10人中抽取一人,乙班10人中抽取二人,三人中及格人数记为X,求X的分布列和期望。
(本小题满分12分)已知函数.(Ⅰ)求函数的最大值,并写出取最大值时的取值集合;(Ⅱ)已知中,角A,B,C的对边分别为a,b,c若b+c=2。求实数a的取值范围。
已知无穷数列的各项均为正整数,为数列的前项和.(Ⅰ)若数列是等差数列,且对任意正整数都有成立,求数列的通项公式;(Ⅱ)对任意正整数,从集合中不重复地任取若干个数,这些数之间经过加减运算后所得数的绝对值为互不相同的正整数,且这些正整数与一起恰好是1至全体正整数组成的集合.(ⅰ)求的值;(ⅱ)求数列的通项公式.
已知函数,其中.(Ⅰ)当时,求曲线在原点处的切线方程;(Ⅱ)求的单调区间;(Ⅲ)若在上存在最大值和最小值,求的取值范围.
若椭圆的方程为,、是它的左、右焦点,椭圆过点,且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆的左右顶点为、,直线的方程为,是椭圆上任一点,直线、分别交直线于、两点,求的值;(Ⅲ)过点任意作直线(与轴不垂直)与椭圆交于、两点,与轴交于点,.证明:为定值.