已知在Rt△ABC,AB=AC,∠BAC=90°,过A的任一条直线AN,BD⊥AN于D,CE⊥AN于E。 (1)求证:DE=BD-CE (2)如将直线AN绕A点沿顺时针方向旋转,使它不经过△ABC的内部,再作BD⊥AN于D,CE⊥AN于E,那么DE、DB、CE之间存在等量关系吗?若存在,请证明你的结论?
如图,反比例函数的图象经过点(-1,),点A是该图象第一象限分支上的动点,连结AO并延长交另一支于点B,以AB为斜边作等腰直角三角形ABC,顶点C在第四象限,AC与轴交于点P,连结BP.(1)的值为 (2)在点A运动过程中,当BP平分∠ABC时,点C的坐标是
(本题共12分)定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形是“等对角四边形”,,,.求,的度数.(2)在探究“等对角四边形”性质时:① 小红画了一个“等对角四边形”(如图2),其中,,此时她发现成立.请你证明此结论.② 由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.(3)已知:在“等对角四边形”中,,,,.求对角线的长.
(本题共10分)水果批发市场有一种高档水果,如果每千克盈利(毛利润)10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20千克. (1)若以每千克能盈利18元的单价出售,问每天的总毛利润为多少元? (2)现市场要保证每天总毛利润6000元,同时又要使顾客得到实惠,则每千克应涨价多少元? (3)现需按毛利润的10%交纳各种税费,人工费每日按销售量每千克支出0.9元,水电房租费每日102元,若剩下的每天总纯利润要达到5100元,则每千克涨价应为多少?
(本题共8分)已知关于的方程.(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数的值.
(本题6分)如图,已知∠AOB,OA=OB,点E在OB上,且四边形AEBF是平行四边形,请你只用无刻度的直尺在图中画出∠AOB的平分线(保留画图痕迹,不写画法),并说明理由.