已知在Rt△ABC,AB=AC,∠BAC=90°,过A的任一条直线AN,BD⊥AN于D,CE⊥AN于E。 (1)求证:DE=BD-CE (2)如将直线AN绕A点沿顺时针方向旋转,使它不经过△ABC的内部,再作BD⊥AN于D,CE⊥AN于E,那么DE、DB、CE之间存在等量关系吗?若存在,请证明你的结论?
甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、l0分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表. 甲校成绩统计表 乙校成绩扇形统计图乙校成绩条形统计图 (1)请将甲校成绩统计表和图2的统计图补充完整; (2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.
解方程:(1)x(x+3)=7(x+3);(2)x2+5x-6=0.
化简:(1)+sin45°; (2)
如图,抛物线y=-x2+bx+c与直线交于C、D两点,其中点C在y轴上,点D的坐标为(3,).点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F,设点P的横坐标为m。 (1)求抛物线的解析式; (2)当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由. (3)若点P在CD上方,则四边形PCOD的面积最大时,求点P的坐标。
已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D. (1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小; (2)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.