已知曲线C: (t为参数), C:(为参数).(1)分别求出曲线C,C的普通方程;(2)若C上的点P对应的参数为,Q为C上的动点,求中点到直线 (t为参数)距离的最小值及此时Q点坐标.
已知函数. (1)当,且是上的增函数,求实数的取值范围; (2)当,且对任意实数,关于的方程总有三个不相等的实数根,求实数的取值范围.
已知抛物线,过焦点且垂直轴的弦长为6,抛物线上的两个动点和,其中且,线段的垂直平分线与轴交于点. (1)求抛物线方程; (2)试证线段的垂直平分线经过定点,并求此定点; (3)求面积的最大值.
在三棱柱中,侧面是边长为2的正方形,点在平面上的射影恰好为的中点,且,设为中点, (1)求证:平面; (2)求与平面所成角的正弦值.
数列满足,(). (1)证明:数列是等差数列; (2)求数列的通项公式; (3)设,求数列的前项和.
在中,,,分别为内角,,的对边,且. (1)求; (2)若,,求.