设点到,距离之差为,到轴,轴距离之比为,求的取值范围.
已知函数的图象经过点 (I)求实数a、b的值; (II)若,求函数的最大值及此时x的值.
已知函数 (1)若,求曲线处的切线; (2)若函数在其定义域内为增函数,求正实数的取值范围; (3)设函数上至少存在一点,使得成立,求实数的取值范围。
已知椭圆的离心率为,长轴长为,直线交椭圆于不同的两点A、B。 (1)求椭圆的方程; (2)求的值(O点为坐标原点); (3)若坐标原点O到直线的距离为,求面积的最大值。
在数列中, (1)求的值; (2)证明:数列是等比数列,并求的通项公式; (3)求数列。
如图,已知直三棱柱ABC—A1B1C1,,E是棱CC1上动点,F是AB中点, (1)求证:; (2)当E是棱CC1中点时,求证:CF//平面AEB1; (3)在棱CC1上是否存在点E,使得二面角A—EB1—B的大小是45°,若存在,求CE的长,若不存在,请说明理由。